LVRT Capability Enhancement of an Egyptian Electrical Grid

Linked to the Al-Zafarana Wind Park using Crowbar and dc-chopper

Ali H. Kasem Alaboudy¹, Heba A. Mahmoud², Adel A. Elbaset³, Montaser Abdelsattar⁴

¹ Electrical Department, Faculty of Technology and Education, Suez University, Suez, Egypt.

³Electrical Engineering Department, Faculty of Engineering, Minia University, Egypt.

⁴ Electrical Engineering Department, Faculty of Engineering, South Valley University, Qena, Egypt.

ABSTRACT

The connection of the doubly-fed induction generator (DFIG) wind turbines to the grid, and their dynamic behavior under different grid faults has become an important issue in recent years, and grid codes have been introduced, which is a challenge for wind energy conversion systems (WECS). One of the most important issues related to grid codes is the low-voltage ride-through (LVRT) of wind farms. Based on such code requirements, wind turbine generators must remain connected to the grid and actively contribute to the system's stability during various grid fault scenarios that result in a generator terminal voltage dip. This paper introduces the design and simulation of the protection scheme using the crowbar and dc-chopper to improve LVRT capacity for the Egyptian power grid connected to the zafarana Egypt wind system. The proposed performance of the protection scheme is verified by simulating the model using the MATLAB/SIMULINK environment. The simulation results showed that the proposed protection scheme is efficient in terms of simplicity in construction and cost efficiency. In addition, the performance of the DFIG is highly improved during the symmetrical and asymmetrical grid faults. Thus making the electrically grid-connected wind energy system more efficient by improving the capacity of LVRT.

Keywords: Wind Turbine; DFIG; LVRT; Zafarana Egypt Wind System; Protection Scheme.

DC-و Crowbar لشبكة الكهرباء المصرية المرتبطة بحديقة الرياح الزعفرانة باستخدام Crowbar و-DC

الملخص

أصبح توصيل تور بينات الرياح ذات التغذية المزدوجة (DFIG) بالشبكة، وسلوكها الديناميكي تحت أعطال الشبكة المختلفة مشكلة مهمة في السنوات الأخيرة، وتم إدخال رموز الشبكة، وهو ما يمثل تحديًا لأنظمة تحويل طاقة الرياح (WECS)واحدة من أهم القضايا المتعلقة برموز الشبكة هي LVRT لمزارع الرياح. بناءً على متطلبات الكود هذه، يجب أن تظل مولدات تور بينات الرياح متصلة بالشبكة وتساهم بفعالية في استقرار النظام أثناء سيناريوهات أخطاء الشبكة المختلفة التي تؤدي إلى انخفاض جهد المولد. يقدم هذا البحث تصميم ومحاكاة مخطط الحماية باستخدام roowbar and dc-chopper لتحسين قدرة LVRT لشبكة الكهرباء المصرية المتصلة بنظام الرياح الزعفرانة مصر. يتم التحقق من الأداء المقترح لنظام الحماية عن طريق محاكاة النموذج باستخدام بيئة المتصلة بنظام الرياح الزعفرانة مصر. المتحاكاة كفاءة مخطط الحماية المقترح من حيث البساطة في البناء وكفاءة التكلفة. بالإضافة إلى ذلك، تم تحسين أداء DFIG بشكل كبير أثناء أعطال الشبكة المتماثلة وغير المتماثلة. وبالتالي جعل نظام طاقة الرياح للمتصل بالشبكة الكهربائية أكثر كفاءة من خلال تحسين قدرة LVRT.

²Electrical Department, Faculty of Technology and Education, Sohag University, Sohag, Egypt.